Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 11533, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34075148

RESUMO

We previously showed that the physiological concentration of 17ß-estradiol in the vaginal environment is sufficient to affect the membrane dynamics and adhesion phenotype of the Lactobacillus crispatus strain CIP104459. However, L. crispatus is a heterogeneous species. Here, we investigated the effect of 17ß-estradiol on the recently isolated L. crispatus vaginal strain V4, related to a cluster distant from CIP104459 and at the limit of being a different subspecies. Grown in the same medium, the two strains expressed a highly similar pool of proteins. However, in contrast to CIP104459, L. crispatus V4 showed high aggregation potential and 17ß-estradiol promoted this phenotype. This effect was associated with large changes in cell-surface polarity and Lewis acid/base properties. In addition, we observed no effect on the membrane dynamics, contrary to CIP104459. These results can be explained by differences in the properties and organization of the S layer between the two strains. However, as for CIP104459, 17ß-estradiol increased biosurfactant production of L. crispatus V4 and their adhesion to vaginal cells. This suggests that 17ß-estradiol agonists would be valuable tools to favor a stable re-implantation of L. crispatus in the vaginal mucosa.


Assuntos
Estradiol/farmacologia , Lactobacillus crispatus/metabolismo , Vagina/microbiologia , Feminino , Humanos , Lactobacillus crispatus/isolamento & purificação
2.
Sci Rep ; 11(1): 7133, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33785829

RESUMO

Lactobacilli and estrogens play essential roles in vaginal homeostasis. We investigated the potential direct effect of 17ß-estradiol on a vaginal strain of Lactobacillus crispatus, the major bacterial species of the vaginal microbiota. 17ß-estradiol (10-6 to 10-10 M) had no effect on L. crispatus growth, but markedly affected the membrane dynamics of this bacterium. This effect appeared consistent with a signal transduction process. The surface polarity and aggregation potential of the bacterium were unaffected by exposure to 17ß-estradiol, but its mean size was significantly reduced. 17ß-estradiol also promoted biosurfactant production by L. crispatus and adhesion to vaginal VK2/E6E7 cells, but had little effect on bacterial biofilm formation activity. Bioinformatic analysis of L. crispatus identified a membrane lipid raft-associated stomatin/prohibitin/flotillin/HflK domain containing protein as a potential 17ß-estradiol binding site. Overall, our results reveal direct effects of 17ß-estradiol on L. crispatus. These effects are of potential importance in the physiology of the vaginal environment, through the promotion of lactobacillus adhesion to the mucosa and protection against pathogens.


Assuntos
Estradiol/fisiologia , Lactobacillus crispatus/fisiologia , Vagina/microbiologia , Adesão Celular , Agregação Celular , Feminino , Humanos , Fluidez de Membrana , Receptores de Estradiol/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...